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CHAPTER 15

Abduction and Abstraction in
Diagnosis: A Schema-based
Account

Carl R. Stern & George E Luger

Introduction

The activity of construcring explanations is strongly geal-dependent. This de-
pendency has recently been emphasized in the “content theory of explana-
tion” proposed by Leake (1992). Leake observes that the information that a
good explanation must provide is closely tied to the reasons for constructing
the explanation. Leake fleshes out his analysis with a taxonomy of general
explanatory goals and an znalysis of the requirements imposed by each type
of goal.

Our study of expert performance in the area of semiconductor component
failure analysis supports Leakes account of goal-dependency. We find that
the patterns of diagnostic explanation produced by failure analysts are close-
ly correlated with the need 1o support different kinds of remedial practices
(Le., different ways of addressing the reliability concerns raised by compo-
nent failures). Explanations of component failures exhibit 2 distinet range of
forms corresponding to the different causal dimensions addressed by remedi-
ation, for example, the component design, the component manufacturing
process, the surrounding circuit design, and the stresses (electrical, mechani-
cal, thermal) originating from an external environment. We have frequenty
observed thar failure analysts working in different sertings (e.g., for a compo-
nent manufacturer vs. a circuit assembly manufacturer) tend to emphasize
different causal dimensions.

Despite the fact that component failures typically result from an interac-
tion of factors, diagnostic explanations usually focus on only one causal di-
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mension, treating the others as incidental. The diagnostician’s selection of a
diagnostic hypothesis provides a context for interpreting evidence, for selec-
tively emphasizing or ignoring certain kinds of data, and for constructing
causal theories about the sequence of events resulting in the failure, Within
the framework of this general hypothesis, the diagnostician’s application of
causal knowledge is controlled by the goal of producing a detailed causal ex-
planation of a certain form.

Our model of diagnosis is based on the observation and analysis of expert
performance in the area of semiconductor component failure znalysis. We
have worked with five failure analysts over nearly half a2 decade in the pro-
cess of constructing a failure analysis expert system.l The weakness of our
original rule-based expert system in capturing the diagnostic problerm solving
behavior of hurnan experts metivated the development of a second architec-
ture. In this architecture, explanation patterns are encoded in schemas. A
schema specifies a general pattern of causation as a causal sequence in which
each step of the sequence is characterized by causal processes of a certain .
type. Using this schema representation, we have developed a schema-based
abduction algorithm that implements an important moedification of the usual
abducrive chaining algorithm {Levesque 1989). In schema-based abduction,
searcn for causal processes to explain unexplained conditions is restricted to
the class of causal processes specified by the schema at the current step.

We now present some observations regarding the patterns of investigation
and hypothesis formation followed by human experts in semiconductor
component failure analysis; this is followed by a generzal discussion of certain
related cognitive issues. In the next two sections we give a specification of
our architecture for diagnesis. We then present an extended example of fail-
ure analysis using this architecture.

Expertise in Context: Component Level Failure Analysis

Semiconductor component failure analysis offers an important example of ex-
pertise in context (Luger and Stern 1992). The failure analyst is presented
with an inirial set of signs, for example, the abnormal behavior of a diode after
burn in,?2 and is required 0 organize an investigation based on an interpreta-
tion of those signs. The analyst begins the analysis by gathering information
about the history and vulnerabilities of the device as well as the particular cir-
cumstances of the current failure. The initial viswal and electrical examina-
tions are conducted against the background of this information. Based on the
initial examinatior, the analyst adopts a prioritized list of hypotheses—the
failure mechanisms which could account for the abnormnal device behavior,
Data gathering then proceeds, focused by the active hypothesis set.

As new information is acquired, some hypotheses are dropped while oth-
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ers are modified. In the light of hypothesis revision, observations that once
were considered relevant are pushed aside, and new observations become
critical. Eventually the investigation stabilizes on a sufficiently well-estab-
lished hypothesis and the focus changes. The geal becomes one of establish-
ing certain details in the causal scenario which are relevant to the task of
fixing the problem or preventing it in the future. The final outcome of this
process, if it is successful, is an explanation of the device malfunction suit-
ably focused and precise enough to support corrective actior.

An essential element of the investigative process is the use of hypotheses to
organize search. The problem solver hypothesizes conditions which are not
directly in evidence, conditions which might account for the device’s anoma-
lous behavior. Initially these conditions may be specified in a very general or
abstract way. Evidence gathering is then directed towards confirming or dis-
confirming these hypotheses as well as elaborating the hypotheses in more
detail.

Although the initial stage of the investigation involves a parallel investiga-
tion of competing hypotheses, each hypothesis can be seen to defire a partic-
ular investigative context. These contexts are distinguished by the scope of
relevant datz, the set of patterns used for reasoning about the evidence, and
the set of methods appropriate for correcting the problem. For example, en-
vironmentally-induced failures are investigated and remediated differently
from manufacturing defects, which are in turn handled differently from fail-
ures resulting from wearout mechanisms. It is therefore impertant to con-
strain the type of fatlure mechanism involved as soon as possible in order to
narrow the scope of the investigation.

Semiconductor failure analysis invelves the initial adoption of candidate
hypotheses, that is, conditions not in evidence, to explain the failure. This
pattern of reasoning was characterized by the philosopher Peirce as a pecu-
liar form called abduction, to be distinguished from the more familiar deduc-
tion and induction (Peirce 1958). It has been studied recently by workers in
the Al research community {e.g., Levesque 1989; Charniak and Shimony
1990; Pearl 1987}, as well as in the cognitive science community (e.g., Fel-
tovich et al. 1984; Kuipers and Kassirer 1984).

Our study of semiconductor failure analysis has led us to examine abduc-
tive problem solving more closely. In an effort 1o understand better the inner
logic of diagnostic investigations, we have analyzed the strucrure of abduc-
tive hypotheses in semiconductor failure analysis and examined the way in
which these hypotheses organize investigations.

The abductive hypotheses used in semiconductor failure analysis are called
failure mechanisms. Failure mechanism represent abstract patterns of causa-
tion, codifying the accurnulated experience of experts both in understanding
and responding to recurring patterns of failures over time. During initial hy-
pothesis formation, failure mechanisms are treated as simple associations be-
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tween sets of symptoms and types of causes. However, as the investigation of
individual hypotheses progress, deeper knowledge from the domain of semi-
conductor physics is brought to bear. To understand the logic underlying the
application. of this deeper domain knowledge, we believe it is necessary tw
view {ailure mechanisms as complex structures representing key elements of
the causal chains which produce failures. Viewed in this way, these abstract
causal patterns help us to understand the specific sequence of data gathering
steps and interpretive reasoning by which human problem solvers pursue the
investigation of hypotheses.

We call the representation of these recurring patterns of causation schemas
because of their role in organizing and interpreting the diagnostician’s experi-
ence. A schema is defined as a cognitive structure which guides the applica-
tion of concepts, in this case causal laws, to experience. Schema-based pat-
tern recognition involves the interpreter’s use of schernas to actively construct
perceptual or conceptual patterns which fit the dara. This notion is distin-
guished from simple pattern marching, where the interpreter selects one of a
predefined set of stored patterns based on criteria such as identity or close-
niess 10 the data. The term schema is thus used in a sense similar to that first
proposed by Kant (1781/1964) and later developed by Bartlett (1932),
Newell and Simon (1972), and Piaget (1970).

Causal Associations and the Heuristics of Diagnosis

In. the area of semiconductor failure analysis, as in many other diagnostic do-
mains, knowledge of first principles is insufficient for proficiency in diagno-
sis. In addition to a knowledge of semiconductor physics, engineers require
an extensive period of training and experience before they become compe-
tent failure analysts. One reason for this is that there can be a large gulf be-
tween observed symptoms on the one hand and the laws of semiconductor
physics on the other. Computationally speaking, the search for explanations
from frst principles involves too large a search space.

The gulf between first principles and observed symptoms is mediated by
the recognition of recurring causal patterns or scenarios. The diagnostician
searches for indications of these causal patterns in the preliminary data. The
semiconductor compomnent failure analyst learns to recognize and reason
about a set of potential failure mechanisms. These represent the commonly oc-
curring patterns of causation to which experts attribute component failures.
For transistors and diodes, the experts we interviewed recognize between 40
and 60 different failure mechanisms.

Failure analysts associate failure mechanisms with failure modes. A fatlure
meode is 2 general class of behavior under which a set of observable symptoms
has been subsumed. For transistors, failure modes include: shert, open, resis-
tive, reverse bias leakage, low gain, intermittent, etc. Examples of associations
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The Data Solutions
Data Classification Solution Refinernent
Problem Heuristic > Solution
Classes

Figure 1. Clancey’s heuristic classification architecture. The essential steps are data
classification, heuristic matching, and solution refinement.

between mechanisms and modes are: contaminarion causes reverse bias leak-
age; particies cause intermittent shorts; faulty die attach causes high series re-
sistance; electrical overstress causes opens; faulty wire bonds cause opens.

It is a mistake to construe such associations as deterministic relations be-
wween cause and effect. Contamination does not always produce leakage; par-
ticles do not always produce shorts. 1t would be more apprepriate to view
these as rough statistical correlations between types of effects and types of
causes, that is, between failure modes and failure mechanisms. The rules in
our expert system estimate the likelihood of failure mechanisms based on the
failure mode along with contexrual factors such as device structure and his-
tory. The important point, however, is that failure modes denote general
types of failures and failure mechanisms denote general patterns of causation.
To attempt to redefine these asscciations in a way that renders them more de-
terministically causal would undermine their heuristic function in the forma-
tion of hypotheses. It is precisely the generality of these associations that al-
lows them to provide a useful decompesition of the global solution space
during the early stages of inquiry.

This pattern of problem solving follows closely that described by Clancey
(1$85) in his analysis of heuristic classification architectures. Clancey discov-
ered that =z large class of expert systems employ a similar method of problem
solving. This architecture is illustrated in Figure 1. The method is based on
identifying a finite set of problem classes and solution classes. Problem data
are first analyzed and identified with a problem class. Then a method of
heuristic classification or matching is used to map the problem class into a
solution class. Clancey used the term heuristic classification, as opposed to
simple classification, to describe the process of associating elements from dis-
tinct classification hierarchies. Finally, a solution refinement method is used
to generate and validate a concrete solution from the solution class. Clancey
recognized that this order of steps was not necessarily sequential; the stages
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of the problem classification, heuristic matching, and solution refinement are
often interleaved. He did, however, propose this as 2 knowledge level
specification: of the logical structure of problem solving in an important class
of expert systems. '

Qur experience indicates that semiconductor component failure analysts
use symptom classification and heuristic matching in generating an hypothe-
sis set. What remains to be described is how these hypotheses are investigat-
ed and elaborated intw viable causal explanations. This corresponds to the
solution: refinement stage described by Clancey. We believe we have discov-
ered an interesting and important characterization of solution refinement
with respect to semiconductor failure analysis. We have observed that causal
hypotheses function as schemas for the construction of causal explanations
from the domain laws and the facts of the case.

Failure Mechanisms and Explanation Schemas

When expert failure analysts are asked to explain their actions and reasoning,
much of their discussicn is phrased in terms of the failure mechanisms
whose presence they are trying to establish or eliminate. Experts, however,
do not usually articulate the content and structure of these failure mecha-
nisms unless asked. Nonetheless, this content and structure is part of the un-
derstanding implicit in their practice, and it is useful to ask thera to articu-
late it. When they are pushed, what experts often describe is a set of
stereotyped failure scenarios. These are patterns of causation consisting of
events or device states connected by transitions, where the transitions are
law-governed processes or mechanisms.

It is important for the knowledge engineer to determine the structure cor-
responding o each failure mechanism in order to understand why particular
test procedures or measurements are performed and how test resulis are in-
terpreted. Simply put, a failure mechanism represents a story pattern ex-
plaining why 2 failure occurred. A story conforming to this pattern has
events or states of a specific type linked by processes or mechanisms of a cer-
tain type. The failure analyst attempts to match events in the current situa-
tion to those in the story. Once those events are known he or she can then
verify that the processes or mechanisms linking events or states conform to
the constraints imposed by the causal first principles of the domain. (We
have creared a set of schema graphs corresponding te the causal mechanisms
which experts use in transistor failure analysis, and describe several of them
later in this chapter.)

Situated Versus Context Free Knowledge

The scientific laws used in diagriosis, for example, the laws of semiconductor
physics, represent a context free form of knowledge. The generality of these
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laws can be seen from the fact that the same laws can be applied to a wide
variety of different situations or circumstances. The heuristic associations be-
tween failure mechanisms and failure modes represent the other extreme.
These correlations vary both in content and strength depending on a variety
of circumstances, including device structure, failure history, and failure anal-
ysis goals. The process of identifying failure mechanisms is thus semiotic in
the sense that it invelves interpreting signs within a pragmatic context.

In forming an hypothesis regarding the cause of leakage,? for example, an
expert will take into account whether a transistor is NPN or PNP* because
contamination induced inversion® is much more strongly correlated with
leakage in PNP transisters. He may also take inte account whether the manu-
facturer has had a history of problems with contamination, and whether
other devices from the same lot show signs of contamination. Similarly, ex-
perts take into account at what stage in its life cycle a device failed, because,
for example, wearout mechanisms such as metal migration and whisker for-
mation become more likely when a device has seen extended testing or use.

We also found that analysts with different goals and resources generally
produce explanations with a different focus and structure. For example, fail-
ure analyses conducted by engineers at 2 manufacturing facility employed a
larger set of causal mechanisms relating to process control in manufacturing
than commercial failure analyses conducted on behalf of end users. More-
over, even when the same manufacturing defects were described, the expla-
nation of defects in the manufacturers failure analysis reports were focused
on the details required to determine necessary changes in the manufacturing
process, whereas the customer’s failure analysis reports were focused on the
details required to detect those defects in the lot acceptance process.

It is useful to consrast the schema-based approach to diagnosis with that of
model-based diagnosis (Davis and Hamscher 1592). Both methods use rea-
soning based on first principles to identify and refine causal explanatons.
Both methods need to employ knowledge of device structure in order to
apply causal knowledge. However, in model-based reasoning, the device
structure is formalized in advance into a context free description. As Davis
and Hamscher acknowledge, the construction of useful and appropriate
models is, to a great extent, a black art. A model is necessarily an abstraction:
it captures only certain aspects of device structure, while omitting others.
The wick in creating a model is to choose a suitable abstraction, one that
does not abstract cut any elements of device structure required to account
for a malfuniction in scme future situation.

In our approach the device structure is formmalized in the context of an hy-
pothesis regarding the type of causality responsible for a failure. This means
that only those aspects of device structure are examined that are relevant to
the hypothesized failure mechanism. Thus the hypethesis provides a context,
determining what aspects of structure need to be formalized.
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A Computational Architecture for Schema-Based Diagnosis

The architecture we propose uses schemas to investigate cawsal mechanisms
and construct explanations. Explanation schemas represent an organized body
of knowledge related 10 a causal pattern. Each schema describes 2 causal mech-
anism which is capable of preducing a determinate range of effects. The mech-
anism is characterized by a set of events or states and their causal connections.
This defines the attributes that must be specified in order ¢ instantate the
causal mechanism vis-a-vis the current situation. The schema is also associated
with a body of “compiled knowledge” used by human problem solvers to test
for the presence of the mechanism and to propose corrective action. Finally the
schema graph gives a concise description of the pattern of causal connections
between events or states, serving as a template for constructing explanations
from the causal domain theory and the facts of the case.

Schema-based diagnosis involves five steps: 1) generation of an hypothesis
set, 2) hypothesis pruning, 3) hypothesis instantiation, 4) explanation con-
struction and validation, and 5) explanation repair. In the following subsec-
tions we describe each of these steps.

Generation of an Hypothesis Set

We use a heuristic classification approach to identify a set of candidate mech-
anisms that will account for the observed fault/malfunction. Initial observa-
tions regarding the symptom or malfunction must be elaborated by further
observations or measurements. Additional evidence gathering in conjunction
with data abstraction is used to locate the maifunction within a classification
hierarchy of problem types. Problem types are then matched against solution
types, that is, causal mechanisms which can produce the observed problems.
Each mechanism corresponds to an abstract pattern of causation. A mecha-
nism is composite in the sense thar it comprises a causal chain, distinguished
by the constituent event types and causal processes. The identification of a
mechanism activates a schema for reasoning about that type of mechanism.

Hypothesis Pruning

The hypothesis set, represented by the set of activated schemas, is tested and
pruned. As mentioned above, each schema is associated with 2 set of tests or
observations designed to confirm or disconfirm the presence of that mecha-
nism. Some tests provide specific support for individual mechanisms while
others provide general criteria for discriminating between classes of causal
mechanisms. General tests discriminate between classes by producing addi-
tional data which some mechanisims can “explain” and others canmot, The test
procedures are collectively assembled and correlated in order to select the least
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cost test for pruning the hypothesis set. Testing and planning steps are alternat-
ed until the number of hypotheses on the “discriminant” cannot be further re-
duced. The remaining mechanisms are ranked in order of likelihood.

Hypothesis Instantiation

The most likely remaining hypothesis is selected for expansion. The corre-
sponding schema graph is applied to the current situation. Nodes in the
schema graph, representing the events in the causal scenario, are correlated
with observed or hypothesized events in the current situation. Facts or data
from the current situation are used to determine event attributes and proper-
ties in the schema graph. Auributes or properties required by the schema but
currently unknown may trigger further testing or observation.

Explanation Construction and Validarion

The schema graph is used as a template to construct an explanation from the
causal domain theory and the known facts of the case. The causal links in the
uninstantiated schema graph represent causal relations at a very general and
abstract level. Consider, for example, one of the simplest schema graphs, that
for an electrical overstress® induced open. This is illustrated in Figure 2. In
this schema graph, two key causal links are “excessive current causes temper-
ature elevation” and “excessive temperature causes melting.”

Omnce the nodes of the graph are bound to a specific set of events, these
causal links need to be reconstructed from the causal domain theory at a
more concrete and detailed level. The application of the causal domain theo-
ry starts from the cbserved symptoms or malfunction {the bottorn of the
schema graph) and proceeds upwards from effect to cause through the in-
stantiated nodes of the graph. This procedure propagates constraints, infer-
ring characteristics of the cause from those of the effect. This procedure ¢an
serve 1o confirm or disconfirm the explanation.

In the current example, if we are using electrical overstress 1o explain a
melted bond wire, we can determine from the composition of the bond wire
material the minimum temperature required to melt it. We thus specify “ex-
cessive temperature” with an exact number. We can then infer from the
thickness and resistance of the bond wire material an exact range of current
over time which would be required to cause the melting. If, for example, the
device could not have seen that level of current, then an inconsistency is de-
tected which disconfirms the hypothesis of simple electrical overstress.

Explanarion Repair

The detection of an inconsistency berween the inferred and actual properties
of an object in the schema graph constitutes a potential disconfirmation of
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cost test for pruning the hypothesis set. Testing and planning steps are alternac-
ed until the nurmber of hypotheses on the “discriminant” cannot be further re-
duced. The remaining mechanisms are ranked in order of likelihood.

Hypothesis Instantiation

The most likely remaining hypothesis is selected for expansion. The corre-
sponding schema graph is applied to the current situation. Nodes in the
schema graph, representing the events in the causal scenario, are correlated
with observed or hypothesized events in the current situation. Facts or data
from the current situation are used to determine event attributes and proper-
ties in the schema graph. Atributes or properties required by the schema but
currently unknown may trigger further testing or observation.

Explanation Construction and Validation

The schema graph is used as a template to construct an explanation from the
causal domain theory and the known facts of the case. The cauvsal links in the
uninstantiated schema graph represen: causal relations at a very general and
abstract level. Consider, for example, one of the simplest schema graphs, that
for an electrical overstress® induced open. This is illustrated in Figure 2. In
this scherma graph, two key causal links are “excessive current causes temper-
ature elevation” and “excessive temperature causes melting.”

Once the nodes of the graph are bound to a specific set of events, these
causal links need to be reconstructed from the causal domain theory at a
more concrete and detailed level. The application of the causal domain theo-
ry starts from the observed symptoms or malfuncticn {the bottom of the
schema graph) and proceeds upwards from effect 1o cause through the in-
stantiated nodes of the graph. This procedure propagates constraints, infer-
ring characteristics of the cause from those of the effect. This procedure can
serve to confirm or disconfirm the explanation.

In the current example, if we are using electrical overstress to explain a
melied bond wire, we can determine from the composition of the bond wire
material the minimum temperature required to melt it. We thus specify “ex-
cessive temperature” with an exact number. We can then infer from the
thickness and resistance of the bond wire material an exact range of current
over time which would be required to cause the melting. If, for example, the
device could not have seen that level of current, then an inconsistency is de-
tected which disconfirms the hypothesis of simple electrical overstress.

Explanation Repair

The detection of an inconsistency between the inferred and actual properzies
of an object in the schema graph constitutes a potential disconfirmation of
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(--—Electrical conducdonj

Excessive voltage or
current at base ot emitter
wire or metalization

Excessive Voltage or Currenc
; Flow Causes Temperature Elevation

Temperature Elevation

Excessive voltage or current
surge in external source

Excessive temperature in base

or emitrer wire Melrs Material
or metalization

Melted base or

emitter wire
or metalization
r.—_?mi[nuity of Melted
Material Is Broken
Open base or

emitter circuit

Figure 2. A linear schema graph for electrical-overstress-induced-open
Excessive voltage or current causes localized temperature elevation,
resulting in melted wire or metallization.

the explanation. At this point, two courses of action are possible. Either the
current hypothesis is discarded or we attempt 10 repair it. If the hypothesis is
discarded, the procedure returns to step 3 and begins 1o instantiate the next
hypothesis on the hypothesis list.

If, on the other hand, no other hypotheses remain, or no other hypothesis
has a similar weight of evidence supporting it, we may choose to repair the
current explanation. In the melied bond wire example, we may conjecrure
that the bend wire was pinched or otherwise thinned at the location where it
melted, thus reducing the amount of current required to melt it. To accom-
plish such an explanation repair, we need to locate the source of the incon-
sistent constraint, the causal link where it originated, and medify one of the
conditions on which the constraint depended.

The problem of explanation repair is one of the most difficult faced by our
method, We explore two general approaches to the problem: 1) to encode
the repair strategies employed by human experts in the area and 2) to use ab-
ductive reasoning to reconstruct from scratch the schema subgraph where
the inconsistency was detected.
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Schema-Based Abduction

At the heart of the procedure described above is a process of reasoning which
we call schema-based abduction. This refers to the method by which the causal
links specified by the schema graph are reconstructed from the causal do-
main theory in the comtext of a set of situation-specific bindings. We next
characterize this mode of reasoning more precisely, relating it to the conven-
tional notion of abduction.

Abduction, as it is ordinarily understood by the logic community in Al, is
a mode of inference which generates candidate explanations for an otherwise
tnexplained set of observations O. Abductive inference allows us to assume
facts not directly in evidence. More formally, an hypothesis H is a minimal
abductive explanation for observation set O if:

i O isnot entailed by the current background knowledge K

ii HvKentails O

iii No proper subset of H has property i

iv H is consistent with K '

Abductive reasoners have been implemented that generate the complete

set of minimal abductive explanations using a relatively straightforward
backchaining approach. They rely on the “inference rule™

zbduce®B, o —= R =0

where & is a conjunction of literals. Backchaining proceeds by taking each 4;
e o, q, £ K asanew abductive subgoal. Such algorithms work best over
sets of propogitional Horn clauses. Typically these systems take as input a set
A of abducible propositicns, that is, propositions which the abductive rea-
somer is allowed 1o include in the hypothesis H. Even for a propositional
Hom clause language, however, this task has been shown to be NP-hard.

The schema-based abduction which we employ represents a highly con-
strained form of abductive reasoning. In schema-based abduction the objects
related as cause and effect are already given in abstract form in the schema
graph. Abductive reasoning consists not in inferring causes from effects but
in inferring properties of the cause from the properties of the effect. More pre-
cisely, for any given link in the schema graph, the set A of abducibles is re-
stricted to properties of the objects or events playing the role of cause in that
particular link. The effect of abduction is thus a kind of constraint propaga-
tion, where insiance bindings representing known properties in the effect are
used to create new instance bindings in the cause. Backchaining search in
schema-based abduction is thus considerably simplified. Its flow is deter-
mined by the preset pattern of links in the schema graph.

There are many cases where backward constraint propagation requires a
method other than simple abductive inference. Consider the case discussed
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earlier in which electrical overstress is the hypothesis used to explain a melt-
ed bond wire, We can infer from the composition of the bond wire and its
thickness the temperature required to melt it. From this we can infer a mini-
mum range of current over time required to produce that temperature. The
propagation of constraints in this case requires an equation solving and
equality substitution capability. We thus identify the term schema-based
abduction with a broadened noticn of abduction that includes methods for
backward constraint propagation such as equation solving and equality sub-
stitution.

Schema-Based Diagnosis: An Fxtended Example

We next analyze a typical situation from the semiconductor failure analysis
domain in terms of schema-based problem solving, A bipolar transistor is
brought in with a complaint of “low gain.” A series of standard electrical
measurements confirms low gain at low current (low gain in low curren:
hFE) as well as discovering a second abnormal electrical characteristic: high
collector base? leakage (high ICBO).

The first phase of reasoning, corresponding to the data abstraction phase in
heuristic classification, involves the firing of a classification rule. High ICBO
and low hFE together are classified as a collector base leakage problem:

result(ICBO, high) A resultthFE_lo, low gain} = problem(C-B, leakage)
This reduction can be readily reconstructed from the domain theory. The ex-
planation is that collector base leakage reduces gain by lowering the effective
base drive. Note that reasoning so far relies solely on representations of inter-
nal device structure and function. This type of reasoning is well handled by
the model-based paradigm.

In the next phase of reasoning, we seek the cause of high collector base
leakage. Heuristic classification rules identify three types of causal mecha-
nisms which can explain collector base leakage:

problem(C-B, leakage) = hypothesis(electrical overstress)
problem(C-B, leakage) = hypothesis(contamination)
problem{C-B, leakage) = hypothesis(mask misalignment/overetch)

These rules all fire, causing the activation of three schemas. The data struc-
ture for a typical schema is described in Figure 3.

Each of the schemas is located within a schema hierarchy, reflecting the hi-
erarchical structure of causal abstractions used 10 organize the search for ex-
planations. An example of a schema hierarchy for bridging faults is given in
Figure 4.

We use the available evidence 10 activate the most specific hypotheses pos-
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Name

Attribute

Indications

Test Procedures

Micro-theory
Schema Graph

Subschemas

electrical overstress induced leakage
Type of overstress (voltage/current)
location of averstress (emitter/base)
intensity (pulse/power)

source type

test equipment or application clustering
linear junction characteristic

leakage is stable over temperature

delid: visual exarnination;
look for orange peel or burn

delid: SEM; look for pitting or tunneling

delid: deprccessing: leok for channels, damage 1o
Si crystalline sructure

overstress induced leakage
EOS-Leakage

ESD induced leakage

oscillation overstress induced leakage

pulse power cverstress induced leakage

Figure 3. The data structure used for electrical-overstress-induced-leakage. The
schema includes not only needed values but also “compiled knowledge” relating to

indications and testing.

sible, that is, the deepest hypothesis in the schema hierarchy. Suppose, for
example, that our transistor is a PNP device. In the schema hierarchy for
bridging faults, we first activated the contamination schema among others.
Using additional evidence, we then specialize the hypothesis of contamina-
tion. The most common form of contamination is Na*. Na* contamination in
PNP transistors typically produces inversion, resulting in a characteristic sig-
" nature of high ICBO leakage. Because our transistor is PNP and because of
the presence of ICBO leakage, we thus specialize the hypothesis of contami-
nazion using the following rule:
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Symptoms: Short
resistive shart, reverse
bias leakage

l Bridging Fault

Shorted Lead,
Post, or

Bond

Wire

Contamination

Heavy Metal

et Processing
Contamination

Residue

1 Volatile . L
lonic Contamination

| Contamiration

/

Sodium
Contaminadon

Chlodde

Contamiration

=
Contaminated Inversion
Junction

Figure 4. The schema hierarchy for bridging faults Diagnosis seeks to identify a hy-
pothesis as deep in the hierarchy as possible.

hypothesis(contamination} A device(polarity, PNP) A problem(C-B, leakage)

NOT(problem(E-B, leakage)} = hypothesis{inversion)

Similarly, we might fire a rule activating ESD® as a subhypothesis of electri-
cal overstress based on the fact that the degradation is localized and that
srnall signal devices are particularly sensitive to ESD damage:

hypothesis(overstress) » problem(C-B, leakage) A NOT{problem(E-B, leakage))

A device(power, small signal} = hypothesis(ESD)

After the hypothesis set is generated, the hypothesis pruning stage begins.
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Each schema provides a standard set of procedures for gathering evidence re-
lated to that particular causal mechanism. Electrical overstress, for example,
is investigated by gathering details about the device’s history and its possible
eXposure to an overstress or ESD environment. Similarly, mask misalignment
is generally a waler level problem; it can thus be investigated by determining
if other chips from the same wafer are similarly degraded.

The internal verification procedures for overstress and mask misalign-
ment/over-etch both involve cutting off the package lid and examining the
internal structure of the device. Since these procedures are potentially de-
structive of evidence, we put them off as long as possible. The internal
verification procedure for contamination, on the other hand, is usually non-
destructive. This procedure depends on the temperature sensitivity of con-
tamination. Since many contaminants are dispersed by elevated tempera-
tures, the device is baked and then electrically retested to see if iis electrical
characteristics have improved. Let us suppose that they have. This fact then
increases the probability of contamination, without completely eliminating
the other hypotheses.

Up until now we have pruned and ordered the hypothesis list using non-
destructive procedures. A nondestructive approach was necessary in order to
allow for the possibility of backtracking. Beyond this point we engage in pro-
cedures which involve irreversible changes to the device and thus potential
destruction of evidence. From this point on, we organize testing based or a
careful consideration of potential gains versus potential costs, including de-
struction of evidence. To focus evidence gathering and precisely define the
goals of each procedure, we continue the investigation in the context of con-
structing a detailed explanation based on the most likely hypothesis.

Explanation construction proceeds by instantiating the schema graph for the
hypothesized mechanism. We illustrate again the notion of a schema graph by
presenting the schema graph for Inversion Induced Leakage in Figure 5.

In constructing an explanation, the instantiated schema graph is traversed
backwards or abductively, reconstructing the causal links using the causal
domain theory. This serves two main purposes: to test the viability of the ex-
planation by determining consistency with known facts, and to serve as a
source of potential tests by fleshing out required conditions or assumptions.
Returning to our example, the hypothesis of inversion is elaborated by pro-
ceeding backwards from the node High ICBO (at the lower right hand corner
of the Inversion Schema graph). According to the graph, high ICBO is caused
by an exposed junction aleng the edge of the chip. To reconstruct this causal
link from the domain theory, we must make use of the fact that the chip sur-
face along the edge is rough because of the way the chip is split off or sawed
from the wafer. It is this roughness, the absence of z regular crystalline struc-
ture, that produces low level leakage when there is an exposed junction. Re-
constructing this causal link from the domain theory thus fleshes out a hid-
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Figure 5. The schema graph for inversion-induced-leakage. Sodium ions produce
an inverted region, extending junction out to the edge of the chip. Leakage occurs at
the chip’s edge.

den assumption, an assumption which might be viclated if, for instance, 2
new method for separating chips from the wafer were invented.

Let us suppose that we have abductively regressed to the condition Collec-
tor-base junction extended to edge of chip (lower left-hand corner of the schema
graph). The two conditions required to produce this result are 1) the collec-
tor base region is inverted and 2) no channel stop is present to prevent the
extension of the inverted region to the chip’s edge. Inversion has been such a
common cause of PNP transistor problems that modemn PNP transistors are
almost always built with a channel stop to prevent the inverted region from
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reaching the edge of the chip. The presence of a properly functioning chan-
nel stop in the transistor would thus be inconsistent with an explanation
based on inversion. The reconstruction of this causal link thus requires that
we establish either 1) the absence of a channel stop or 2) a defect in the
channel stop.

Suppose we determine, after a low power internal visual examination, that
a channel stop is present. This determination then focuses the examination
of the die on the search for a defect in the chanrel stop. The discovery of
such a defect would significantly increase the force of evidence behind an in-
version-based explanation. It would alsc specialize the explanation, adding
an important twist: the cause of the leakage problem is Na+ contamination in
conjunction with a faulty channel stop. The process of explanation construc-
don thus results in an explanation richer in detail and more useful than the
abstract explanatory hypothesis from which we started.

Conclusion

We propose an architecture for integrating heuristic problem solving and
causal reasoning. This approach uses heuristic matching at a high level of ab-
straction to frame initial hypotheses. These are then refined to form fully ar-
ticulated explanations. The schema-based architecture we propose involves a
dynamic process of interrogation, explanation generation, and hypothesis
evaluation. This in effect supports search through alternative interpreration
spaces constrained by the fit of hypotheses 1o data.

In addition, the schema-based architecture provides a means for modeling
the practical dimension of explanation construction. We have observed in
our work with human failure analysts that the structure and focus of expla-
nations generally reflect the practical need to support specific remedial prac-
tices. The use of a schema-based architecture to control explanation con-
struction allows us to model this practical dimension, generating
explanations which are consistent with the evidence and the applicable laws
of semiconducter physics but which at the same time embody a structure de-
veloped over time to support certain types of corrective action.

Notes
1. This expert system, called DSFAX, was developed for Sandia National Laberatories
from 1988 10 1994.

2. Burn in is a test procedure in which a device is powered up over an extended peri-
od of time under carefully controlled conditions in order to identify potential defects.

3. Leakage denotes the existence of 2 small channe! current path berween device loca-
tions or across a junction which is reverse biased.
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4. NPN and PNP stand for the two possible polarity structures of bipolar transistors.

" 5. Inversion is a phenomenon in which positively charged ions auract negative ions
from an adjacent P region, effectively creating a thin N region across which a leakage
current czn flow.

6. Electrical overstress is an excessive current or voltage applied to the device.

7. The two junctions of a bipolar transistor are the coliector base (CB) and emitrer
base (EB).

8. ESD, or ElectroStatic Discharge, is a short duration high volage current resulting
from a static buildup, usually from a human source.
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